The first passage event for sums of dependent Lévy processes with applications to insurance risk

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The First Passage Event for Sums of Dependent Lévy Processes with Applications to Insurance Risk by Irmingard

For the sum process X =X1 +X2 of a bivariate Lévy process (X1,X2) with possibly dependent components, we derive a quintuple law describing the first upwards passage event of X over a fixed barrier, caused by a jump, by the joint distribution of five quantities: the time relative to the time of the previous maximum, the time of the previous maximum, the overshoot, the undershoot and the undersho...

متن کامل

“the effect of risk aversion on the demand for life insurance: the case of iranian life insurance market”

abstract: about 60% of total premium of insurance industry is pertained?to life policies in the world; while the life insurance total premium in iran is less than 6% of total premium in insurance industry in 2008 (sigma, no 3/2009). among the reasons that discourage the life insurance industry is the problem of adverse selection. adverse selection theory describes a situation where the inf...

15 صفحه اول

Crossover between Lévy and Gaussian regimes in first-passage processes.

We propose an approach to the problem of the first-passage time. Our method is applicable not only to the Wiener process but also to the non-Gaussian Lévy flights or to more complicated stochastic processes whose distributions are stable. To show the usefulness of the method, we particularly focus on the first-passage time problems in the truncated Lévy flights (the so-called KoBoL processes fr...

متن کامل

Convolution Equivalent Lévy Processes and First Passage Times

We investigate the behavior of Lévy processes with convolution equivalent Lévy measures, up to the time of first passage over a high level u. Such problems arise naturally in the context of insurance risk where u is the initial reserve. We obtain a precise asymptotic estimate on the probability of first passage occurring by time T . This result is then used to study the process conditioned on f...

متن کامل

Ruin Probabilities and Overshoots for General Lévy Insurance Risk Processes

We formulate the insurance risk process in a general Lévy process setting, and give general theorems for the ruin probability and the asymptotic distribution of the overshoot of the process above a high level, when the process drifts to −∞ a.s. and the positive tail of the Lévy measure, or of the ladder height measure, is subexponential or, more generally, convolution equivalent. Results of Asm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Probability

سال: 2009

ISSN: 1050-5164

DOI: 10.1214/09-aap601